
HERAKLES: Hierarchical Skill Compilation
for Open-ended LLM Agents

Anonymous Author(s)

1 Introduction

Recent advances in AI have yielded agents with human-level performance in vision and language tasks, driven by
foundation models trained on large-scale internet data [25, 1, 9]. However, these static datasets limit progress toward
general intelligence [22]. In contrast, humans acquire diverse skills continuously via open-ended interaction with their
environment. Replicating this ability is a central goal of AI: to build autotelic agents that self-generate goals and learn
without fixed datasets [4, 17, 6]. Recent systems like MineDojo [7], Voyager [23], OMNI [26], and ACES [15] leverage
foundation models for open-ended learning. These agents autonomously generate or select goals, prioritize learning
progress [8], and adapt via curricula. Yet, as goal complexity increases, the combinatorial growth in required subskills
slows learning [20, 3, 14]. Humans mitigate this through hierarchical learning: decomposing complex skills into
reusable subskills [19]. Inspired by this, AI research has adopted hierarchical structures in vision [12] and reinforcement
learning [18, 16], increasingly incorporating language for goal decomposition [2, 11]. However, most approaches
assume predefined skills, limiting adaptability in open-ended settings. We introduce HERAKLES (HiERarchicAl sKill
compiLation for open-Ended agentS): a method for training autotelic agents with jointly learned high-level (HL) and
low-level (LL) policies in dynamic goal spaces. HERAKLES uses an LLM-based HL policy to select mastered subgoals
and guide the LL policy, which compiles skills into an efficient, executable form. Both components co-evolve via
an online curriculum without requiring pre-trained skills. We evaluate HERAKLES in the Crafter environment [10].
HERAKLES simultaneously learns πHL and πLL, respectively the HL and LL policies (see Figure 1). πHL is a
pre-trained LLM, fine-tuned using RL. It samples skills from the set of skill G̃k, the skill space constructed at each step,
using constrained decoding. πLL is a small, not pre-trained, neural network also trained using RL. As πHL masters
a goal g, it is distilled into πLL. πHL can then use πLL to reach g, for example inside a trajectory to achieve a more
complex goal g′.

2 Experiments

We evaluate HERAKLES in Crafter [10] (modify similarly to [5]), a 2D Minecraft-like environment with procedu-
ral generation and partial observability. Goals are organized in an achievement tree, often requiring the reuse of
previously acquired artifacts (e.g., crafting a pickaxe requires a table). We assume goals are externally generated
and focus on efficient hierarchical learning. Agents in Crafter are encouraged to master a wide range of goals
from an achievement tree. Goal difficulty is state-dependent; e.g., place table is easier with wood in the inven-
tory. To select goals that maximize learning progress, we use MAGELLAN [8], which estimates competence and
learning progress online. MAGELLAN further improves generalization by leveraging semantic relations between
goals. We instantiate πHL with Mistral 7B, trained using the POAD on-policy RL algorithm [24], sampling skills
via constrained decoding. πLL is a 2M-parameter ResNet adapted from [13] and trained with the AWR off-policy
algorithm. We compare HERAKLES against: textscPOAD[24], using only πHL with the action space restricted to
primitives A, to isolate the impact of hierarchy, FUN[21], a standard HRL baseline where subgoals are sampled in
a learned embedding space. To match our setup, we make FUN’s HL policy goal-conditioned by providing goal
embeddings generated by the same LLM used in HERAKLES. Crafter features a heterogeneous and compositional
goal space, where more difficult goals require chaining an increasing number of elementary actions. To assess how
HERAKLES scales with goal difficulty, we evaluate sample efficiency by training agents for 30,000 high-level steps
and measuring progress with the Crafter score [10]:Sc = exp

(
1
N

∑N
i=1 ln(1 + sri)

)
− 1, where sri ∈ [0, 100] is

the success rate for goal i, and N = 10 is the total number of goals. This metric emphasizes rare and difficult
achievements via geometric averaging. As shown in Figure 2, HERAKLES rapidly accumulates successful goals,
leveraging compiled skills to accelerate learning of more complex tasks. In contrast, POAD plateaus at Sc = 5, under-



Figure 1: Skill learning and compilation in HERAKLES: Given a goal g and initial state s0, the high-level policy πHL

constructs a skill space G̃0 and samples a skill g̃0 ∈ G̃0. The low-level policy πLL then executes k primitive actions to
reach g̃0, resulting in state sk. This process iterates: πHL samples a new skill g̃k given (sk, g), and πLL attempts to
achieve it. The interaction continues until the goal g is reached or a step limit is exceeded, yielding:1)A high-level
trajectory: the sequence of sampled skills 2) A set of low-level trajectories: one per skill, conditioned on reaching that
skill. πHL is trained on its trajectory to improve skill selection. πLL is trained on all low-level segments, conditioned on
their respective subgoals g̃.Skill compilation is performed by additionally training πLL on the concatenated low-level
trajectory, conditioned directly on g. This enables πLL to gradually internalize full skill sequences, allowing direct goal
execution without high-level intervention.

HERAKLES POAD FUN
Original goals 49.4 3.3 27.3

Synonyms 41.5
(-16%)

2.5
(-24%)

19.9
(-27%)

Table 1: Generalization for synonyms goals.

performing even a random policy. Its success concentrates on trivial goals (e.g., go to tree with sr = 1.0± 0.0),
with minimal progress on complex ones (e.g., make wood pickaxe with sr = 3.9 ± 6.8 × 10−3). FUN shows
slow improvement, slightly above random, hindered by its inability to reuse mastered goals for skill composition.

Figure 2: Number of goals reached as a function of the
number of high-level steps. Shaded area denotes standard
deviation over 4 seeds. HERAKLES is the only method with
approximately linear goal acquisition over time.

We assess the generalization performance of HERAKLES,
POAD, and FUN on a set of synonym-based goals. For
each original goal, such as "collect wood", we define a
synonym set by selecting five alternative formulations
(e.g., "gather wood", "harvest wood", "procure wood",
"acquire wood", and "amass wood"), and compute the
average Crafter score across these variants. Table 1 ag-
gregates these instantaneous measurements into a single
averaged metric over the entire training period. HER-
AKLES experiences only a 16% drop in average score
relative to the original goal space, POAD and FUN exhibit
more substantial decreases of 24% and 27%, respectively.
These results highlight the superiority of HERAKLES in
handling semantic variability in goal specification.
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