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Exploration in reinforcement learning (RL) remains a fundamental challenge, particularly in en-
vironments with sparse rewards or uncertain dynamics. Intrinsic motivation methods such as cu-
riosity (Pathak et al., 2017) and empowerment (Klyubin et al., 2005) offer principled exploration
objectives by encouraging agents to acquire knowledge or gain influence over future states. Em-
powerment, formalised as the mutual information between actions and successor states, quantifies
an agent’s potential to control its future. However, existing formulations typically assume access
to a known or deterministic transition model, limiting applicability in real-world scenarios where
dynamics must be learned and remain uncertain (Klyubin et al., 2005; Choi et al., 2021).

We propose Bayesian Approximate Empowerment for Reinforcement Learning Exploration
(BAERLE), a model-based method that enables empowerment-based exploration under transition
uncertainty. BAERLE estimates the distribution over empowering actions using Stein Variational
Gradient Descent (SVGD) (Liu & Wang, 2016), a particle-based variational inference technique.
Unlike prior approaches that rely on ensemble variance or prediction error, BAERLE directly in-
fers a particle approximation to the empowerment-maximising action distribution by propagating
SVGD particles through a learned differentiable dynamics model. This naturally captures epistemic
uncertainty through particle diversity and provides a flexible mechanism for both exploration and
robustness.

In our approach, particles refer to samples of actions maintained in parallel to approximate the
optimal action distribution that maximises empowerment. Unlike variational inference methods that
use particles to represent uncertainty over latent variables or model parameters, each particle is an
action in an agent’s continuous action space.

Empowerment at a given state s is defined as the mutual information between actions A and next
states S′:

I(A;S′ | s) = H(S′ | s)−H(S′ | A, s),

which quantifies the influence of actions on future outcomes. Since computing this exactly is
intractable in most settings, we approximate the optimal action distribution using a variational
objective:

I(A;S′) = max
q(a)

Ea∼q Es′∼pϕ(·|s,a) [log pϕ(s
′ | s, a)− log pϕ(s

′)] ,
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where pϕ(s
′ | s, a) is the learned transition model and pϕ(s

′) is the marginal next-state distribution
under q(a).

We approximate the target distribution

π(a) ∝ exp (Es′ [log pϕ(s
′ | s, a)]− log pϕ(s

′))

by transporting a set of N particles {ai}Ni=1 via SVGD. Each particle is updated iteratively using the
rule:

ai ← ai + η ϕ(ai),

where the SVGD direction ϕ(a) is given by

ϕ(a) =
1

N

N∑
j=1

[
K(aj , a) g(aj) +∇aj

K(aj , a)
]
,

with K(·, ·) an RBF kernel and

g(a) = ∇a [Es′ log pϕ(s
′ | s, a)− log pϕ(s

′)] .

This particle-based optimisation captures both the expected empowerment and its uncertainty through
the diversity of actions sampled. Once particles converge, empowerment is estimated using a
log-partition approximation over the particle log-scores. We interpret the final particle set as an
approximate posterior over empowering actions.

To avoid pathological exploration of unpredictable but uncontrollable transitions, we apply a thresh-
olding mechanism. If the expected empowerment at state s is below a small constant δ > 0, we
suppress the intrinsic reward. The reward is otherwise computed as:

rint =

{
αE[I(A;S′)] + β Var(I(A;S′)) if E[I(A;S′)] > δ,

0 otherwise,

where α and β weight the contributions of control and exploration. This formulation explicitly
combines empowerment with epistemic uncertainty, prioritising states where both control and
learning potential are high.

We embed BAERLE into a model-based RL loop. The dynamics model fϕ is trained from collected
transitions via maximum likelihood, and the policy is updated using a standard RL optimiser (e.g.,
PPO or SAC) with augmented rewards r = rext + rint. SVGD updates are performed for a subset of
states in each batch, allowing scalable computation of intrinsic rewards. All gradients are computed
via automatic differentiation in PyTorch, and SVGD uses N = 100 particles with T = 50 iterations
and a median-heuristic kernel bandwidth.

We embed BAERLE into a model-based RL loop. The dynamics model fϕ is trained from collected
transitions via maximum likelihood, and the policy is updated using a standard RL optimiser (e.g.,
PPO or SAC) with augmented rewards r = rext + rint. SVGD updates are performed for a subset of
states in each batch, allowing scalable computation of intrinsic rewards. All gradients are computed
via automatic differentiation in PyTorch, and SVGD uses N = 100 particles with T = 50 iterations
and a median-heuristic kernel bandwidth.

Our implementation demonstrates that BAERLE is computationally tractable and compatible with
modern deep RL pipelines. Early experiments on stochastic control tasks suggest that the method
produces diverse and structured behaviour, but a full evaluation of exploration efficiency and
downstream policy performance remains ongoing. We plan comparisons against curiosity-driven
baselines, e.g., (Pathak et al., 2017; Houthooft et al., 2016).

In summary, BAERLE offers a scalable and principled approach to exploration under uncertainty,
bridging empowerment with Bayesian inference. By explicitly considering both controllability and
epistemic uncertainty, it provides a foundation for future work on intrinsically motivated agents that
reason under uncertainty about their own influence. We present this as an initial investigation into
the idea, with further analysis and benchmarking underway.
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