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Abstract— Owing to their very large training datasets, foun-
dation models such as Large Language Models (LLMs) are well-
suited for open semantic interactions, making them attractive
tools for robotic manipulation. However, many state-of-the-
art techniques only focus on a small subset of the challenges
presented by robotic manipulation, and end-to-end solutions
such as Vision-Language-Action models require prohibitively
large amounts of real-world data for training. In this work, we
introduce the language-based components of a manipulation
pipeline designed to follow free-form instructions. A modular
planning element, based on lightweight LLMs, splits the task
into subgoals and leverages a library of robotic primitives to
follow the resulting plan. We also propose an open-vocabulary
object segmentation method, designed to facilitate task-oriented
object grasping. While each component is independently pow-
erful, we provide examples of the whole pipeline being used for
real-world manipulation tasks in two settings.

I. INTRODUCTION

Large language models are promising tools for enabling
robots to evolve in open environments following open in-
structions. Owing to their training on internet-scale data,
they are able to carry out a range of tasks, but significant
challenges remain in bridging the semantic gap between
high-level instructions and low-level robot actions.

A. Related works

In robotics, the common sense of LLMs can manifest as
an ability to follow instructions using pre-defined motion
primitives [1], [2], for example to generate trajectories to
train multitask policies [3]. Foundation models can also
be used for reward design, either directly writing reward
signals [4] or generating intermediate representations such as
images [5]. Efforts have been made to leverage the semantic
knowledge within foundation models in the context of
grasping, but such methods rely on large, human-annotated
datasets [6] or fail to account for the subsequent task [7].
Vision-language-action (VLA) models are a rapidly growing
paradigm in robotics. The key idea of VLAs is to directly
predict actions from the task statement and robot camera(s)
output [8]. While early VLA models were trained from
scratch, using language models as a backbone has been
gaining traction, with the goal of leveraging such models’
general knowledge [9], or even retaining multimodal
understanding abilities [10]. VLAs have shown impressive
results on challenging manipulation tasks, but generalization
remains a challenge and they often rely on fine-tuning [11],
requiring large datasets.
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B. Contributions

Many of the works above rely on very large models
and/or high quantities of real-world data. In this work, we
show the following: (i) light-weight language models can
be efficient tools for robotic planning, provided they are
used within an architecture designed to palliate their lower
performance; (ii) world knowledge embedded in foundation
models can be used for grasp segmentation and selection,
exploiting the diversity afforded by some in-silico methods
and (iii) combined together and with access to appropriate
robotic skills, these components can be used as the semantic
backbone of a manipulation pipeline, whose online compute
requirements can be satisfied with a standard laptop.

II. METHODS

Language-driven planning: We propose a modular archi-
tecture (see Figure 1), leveraging small language models
while, by design, alleviating common LLM shortcomings
in robotics. For more detail on such failures, refer to [12].
The first element of the architecture is the so-called planning
module. This module receives the free-form task instruction
and decomposes it into steps, formulated in language. This
approach is, in part, inspired by the chain-of-thought method:
it is easier to execute the task and react to failures when
acting step by step. Then, a second LLM module explicits
the expected outcome of each step. On top of generally
improving final code quality [12], this module can be used
to systematically include task-specific information such as,
for manipulation tasks, which subpart of an object should be
grasped. Finally, both the plan and the expected outcomes
are sent to the execution module. This module has access
to the primitives available to the robot, and is responsible
for producing code solving each step plan using the robot’s
skills. The code is verified on a logical twin of the scene,
where simple rules filter out common mistakes, and is then
executed on the robot. When available, real-world perception
primitives can be used as another feedback source. In our
experiments, we use either llama3.1 (8bn parameters) or
qwen3 (4bn parameters) for all the components of the
architecture, allowing us to rely on a standard laptop.
Task-aware grasp selection: Quality-diversity algorithms

are well-suited to generate diverse archives of grasps givne
an object model [13]. In open-ended manipulation, selecting
the optimal grasp based on the task is crucial. Our open-
vocabulary segmentation pipeline for 3D objects, based on
off-the-shelf components, is as follows (see Figure 2). First,
the object’s model is rendered as an image using principal
component analysis. Then, the image is segmented using the



Fig. 1: [12] Modular architecture for task planning and execution.
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Fig. 2: [15] Open-ended object segmentation pipeline

SAM model [14] and the segmented subparts are labelled
using a vision-language model. The 2-dimensional segmen-
tation map is projected in 3D, and each grasps is labelled
based on the object subpart in contact with the gripper. In
standalone use, an LLM component infers a cost function
based on the desired subpart to be grasped, while when in
our planner the grasping skill is parametrized to allow the
execution module to specify which subpart to grasp.

III. EXPERIMENTS AND RESULTS

In this section, we showcase examples of our pipeline
being used for 2 manipulation tasks, namely robothon
task board manipulation [16] and pick-and-place, using the
Franka FR3 robot. For more thorough evaluation of the
modules, we refer to their respective papers [12], [15].
Robothon task board: The robothon task board is designed
to simulate industrial manipulation of electronic devices.
In this task, the motion primitives consist of pressing the
two buttons, plugging the cable into a socket and opening
the trapdoor (see Figure 3). The cable-plugging skill was
obtained by using our planning architecture and a task-
oriented grasp on the cable housing, showcasing the compat-
ibility of our approach with curriculum-style methods. The
task board manipulation is carried out in real time, due to
the fast inference time of smaller LLMs. For a video, see
https://tinyurl.com/4h2ysybd.
Pick-and-place task: We deploy our segmentation pipeline
on common-object pick-and-place tasks. Here, the motion
primitives are a grasp and a place skill. We deploy the pick-
and-place motions on 4 YCB objects, alternating between

Fig. 3: Task board manipulation. The skills are executed in se-
quence, and some of them were designed using a task-aware grasp.

Fig. 4: Pick-and-place tasks. Top panel: pick-and-place of the
screwdriver, with the handle being the optimal subpart to grasp
for placing. Bottom panel: two grasps on the mug subparts ’body’
and ’handle’. The objects are placed on an Aruco board for pose
estimation.

subparts. See Figure 2 for pictures.

IV. CONCLUDING REMARKS AND FUTURE WORK

We presented the language-based components of our ma-
nipulation architecture. Namely, we introduced a first module
designed to plan and execute tasks using a light-weight, local
language model, leading to low compute requirements [12].
Then, we introduced a task-oriented segmentation mecha-
nism that labels grasps from an archive to allow for task-
oriented grasp selection. We showed the pipeline executing
manipulation tasks given free-form inputs.
Future work directions include adding richer feedback mech-
anisms between the real world and the planning compo-
nent to allow the pipeline to retry when primitive failure
occurs, using language-based reward shaping methods to au-
tonomously acquire missing motion primitives, and exploring
how the grasp segmentation pipeline can be used to produce
high-quality real-world grasping trajectory data.
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